5,047 research outputs found

    Structural Studies of Decaying Fluid Turbulence: Effect of Initial Conditions

    Full text link
    We present results from a systematic numerical study of structural properties of an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid with an initial energy spectrum that develops a cascade of kinetic energy to large wavenumbers. The results are compared with those from a recently studied set of power-law initial energy spectra [C. Kalelkar and R. Pandit, Phys. Rev. E, {\bf 69}, 046304 (2004)] which do not exhibit such a cascade. Differences are exhibited in plots of vorticity isosurfaces, the temporal evolution of the kinetic energy-dissipation rate, and the rates of production of the mean enstrophy along the principal axes of the strain-rate tensor. A crossover between non-`cascade-type' and `cascade-type' behaviour is shown numerically for a specific set of initial energy spectra.Comment: 9 pages, 27 figures, Accepted for publication in Physical Review

    Two-point velocity average of turbulence: statistics and their implications

    Full text link
    For turbulence, although the two-point velocity difference u(x+r)-u(x) at each scale r has been studied in detail, the velocity average [u(x+r)+u(x)]/2 has not thus far. Theoretically or experimentally, we find interesting features of the velocity average. It satisfies an exact scale-by-scale energy budget equation. The flatness factor varies with the scale r in a universal manner. These features are not consistent with the existing assumption that the velocity average is independent of r and represents energy-containing large-scale motions alone. We accordingly propose that it represents motions over scales >= r as long as the velocity difference represents motions at the scale r.Comment: 8 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    New algorithms for the dual of the convex cost network flow problem with application to computer vision

    Get PDF
    Motivated by various applications to computer vision, we consider an integer convex optimization problem which is the dual of the convex cost network flow problem. In this paper, we first propose a new primal algorithm for computing an optimal solution of the problem. Our primal algorithm iteratively updates primal variables by solving associated minimum cut problems. The main contribution in this paper is to provide a tight bound for the number of the iterations. We show that the time complexity of the primal algorithm is K ¢ T(n;m) where K is the range of primal variables and T(n;m) is the time needed to compute a minimum cut in a graph with n nodes and m edges. We then propose a primal-dual algorithm for the dual of the convex cost network flow problem. The primal-dual algorithm can be seen as a refined version of the primal algorithm by maintaining dual variables (flow) in addition to primal variables. Although its time complexity is the same as that for the primal algorithm, we can expect a better performance practically. We finally consider an application to a computer vision problem called the panoramic stitching problem. We apply several implementations of our primal-dual algorithm to some instances of the panoramic stitching problem and test their practical performance. We also show that our primal algorithm as well as the proofs can be applied to the L\-convex function minimization problem which is a more general problem than the dual of the convex cost network flow problem

    "Locally homogeneous turbulence" Is it an inconsistent framework?

    Full text link
    In his first 1941 paper Kolmogorov assumed that the velocity has increments which are homogeneous and independent of the velocity at a suitable reference point. This assumption of local homogeneity is consistent with the nonlinear dynamics only in an asymptotic sense when the reference point is far away. The inconsistency is illustrated numerically using the Burgers equation. Kolmogorov's derivation of the four-fifths law for the third-order structure function and its anisotropic generalization are actually valid only for homogeneous turbulence, but a local version due to Duchon and Robert still holds. A Kolomogorov--Landau approach is proposed to handle the effect of fluctuations in the large-scale velocity on small-scale statistical properties; it is is only a mild extension of the 1941 theory and does not incorporate intermittency effects.Comment: 4 pages, 2 figure

    Entropy and Area in Loop Quantum Gravity

    Full text link
    Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. I argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.Comment: 7 pages, this essay received an Honourable Mention in the Gravity Research Foundation Essay Competition 2005; reformatted for IJMP (accepted for publication) with minor typographical corrections and some extended discussio

    Relation between shear parameter and Reynolds number in statistically stationary turbulent shear flows

    Full text link
    Studies of the relation between the shear parameter S^* and the Reynolds number Re are presented for a nearly homogeneous and statistically stationary turbulent shear flow. The parametric investigations are in line with a generalized perspective on the return to local isotropy in shear flows that was outlined recently [Schumacher, Sreenivasan and Yeung, Phys. Fluids, vol.15, 84 (2003)]. Therefore, two parameters, the constant shear rate S and the level of initial turbulent fluctuations as prescribed by an energy injection rate epsilon_{in}, are varied systematically. The investigations suggest that the shear parameter levels off for larger Reynolds numbers which is supported by dimensional arguments. It is found that the skewness of the transverse derivative shows a different decay behavior with respect to Reynolds number when the sequence of simulation runs follows different pathways across the two-parameter plane. The study can shed new light on different interpretations of the decay of odd order moments in high-Reynolds number experiments.Comment: 9 pages, 9 Postscript figure

    Analogy between turbulence and quantum gravity: beyond Kolmogorov's 1941 theory

    Full text link
    Simple arguments based on the general properties of quantum fluctuations have been recently shown to imply that quantum fluctuations of spacetime obey the same scaling laws of the velocity fluctuations in a homogeneous incompressible turbulent flow, as described by Kolmogorov 1941 (K41) scaling theory. Less noted, however, is the fact that this analogy rules out the possibility of a fractal quantum spacetime, in contradiction with growing evidence in quantum gravity research. In this Note, we show that the notion of a fractal quantum spacetime can be restored by extending the analogy between turbulence and quantum gravity beyond the realm of K41 theory. In particular, it is shown that compatibility of a fractal quantum-space time with the recent Horava-Lifshitz scenario for quantum gravity, implies singular quantum wavefunctions. Finally, we propose an operational procedure, based on Extended Self-Similarity techniques, to inspect the (multi)-scaling properties of quantum gravitational fluctuations.Comment: Sliglty modified version of the article about to appear in IJMP

    Shear Effects in Non-Homogeneous Turbulence

    Get PDF
    Motivated by recent experimental and numerical results, a simple unifying picture of intermittency in turbulent shear flows is suggested. Integral Structure Functions (ISF), taking into account explicitly the shear intensity, are introduced on phenomenological grounds. ISF can exhibit a universal scaling behavior, independent of the shear intensity. This picture is in satisfactory agreement with both experimental and numerical data. Possible extension to convective turbulence and implication on closure conditions for Large-Eddy Simulation of non-homogeneous flows are briefly discussed.Comment: 4 pages, 5 figure

    Scaling Relations of Compressible MHD Turbulence

    Full text link
    We study scaling relations of compressible strongly magnetized turbulence. We find a good correspondence of our results with the Fleck (1996) model of compressible hydrodynamic turbulence. In particular, we find that the density-weighted velocity, i.e. uρ1/3vu \equiv \rho^{1/3} v, proposed in Kritsuk et al. (2007) obeys the Kolmogorov scaling, i.e. Eu(k)k5/3E_{u}(k)\sim k^{-5/3} for the high Mach number turbulence. Similarly, we find that the exponents of the third order structure functions for uu stay equal to unity for the all the Mach numbers studied. The scaling of higher order correlations obeys the She-Leveque (1994) scalings corresponding to the two-dimensional dissipative structures, and this result does not change with the Mach number either. In contrast to vv which exhibits different scaling parallel and perpendicular to the local magnetic field, the scaling of uu is similar in both directions. In addition, we find that the peaks of density create a hierarchy in which both physical and column densities decrease with the scale in accordance to the Fleck (1996) predictions. This hierarchy can be related ubiquitous small ionized and neutral structures (SINS) in the interstellar gas. We believe that studies of statistics of the column density peaks can provide both consistency check for the turbulence velocity studies and insight into supersonic turbulence, when the velocity information is not available.Comment: 4 pages, 5 figure

    The Kelvin-wave cascade in the vortex filament model

    Get PDF
    The energy transfer mechanism in zero temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting Kelvin-waves to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with nonlocal six-wave Kelvin wave interactions as proposed by L'vov and Nazarenko.Comment: 6 pages, 6 figure
    corecore